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Previous studies on solute transport in vegetated channels often use simplified
cylinder arrays, which fail to capture the complex hydrodynamics caused by realistic
plant structures.



Realistic Artificial Vegetation
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Switching from rigid cylinder arrays to realistic plant forms: (a) 6 branches, (b) 4
branches, (c) 2 branches, (d) single stem, and (e) 8 mm cylinder.



Laboratory Setup

300

300 mm wide, 12.5 m long recirculating flume.

Rhodamine WT used as the tracer.

4 Cyclops sensors installed at 3 m intervals
along the flume.

Tested at multiple flow rates ranging from 1.5
to 12 I/s.

Steady and uniform flow maintained at 105
mm water depth.

Flume tilt adjusted to vary slope and ensure
uniformity; used to estimate Manning’s n.




Methodology

Tracer measurements using Cyclops sensors

70 1D Advection-Dispersion Equation
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Optimized Dx and U through curve
fitting.

Validation: checked mass balance to
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Time, t (5) assess recovery and mixing.



Results
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Dx increases with velocity and vegetation density; denser setups show stronger
dispersion, while sparse or cylinder setups show lower Dx.



Results
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Manning’s n decreases with velocity; denser vegetation has consistently higher n
values.



Conclusions

* Vegetation density significantly affects longitudinal dispersion, with
higher branch density enhancing Dx and channel mixing.

* Dispersion increases with flow velocity, strongest in dense vegetation;
cylindrical and zero-branch setups show minimal impact.

 Manning’s n decreases with velocity but stays consistently higher in
denser setups.

* Findings highlight vegetation’s role in solute transport and provide a
foundation for future modelling.
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